/* * Copyright 2021 Christian Pierre MOMON * Copyright 2020 Dr Ian Preston ianopolous * Copyright 2018 Andreas Schildbach * Copyright 2011 Google Inc. * * From: * https://github.com/multiformats/java-multibase/blob/master/src/main/java/io/ipfs/multibase/Base58.java * https://github.com/bitcoinj/bitcoinj/blob/master/core/src/main/java/org/bitcoinj/core/Base58.java * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.april.hebdobot.privatebin; import java.math.BigInteger; import java.util.Arrays; /** * Base58 is a way to encode Bitcoin addresses (or arbitrary data) as * alphanumeric strings. *

* Note that this is not the same base58 as used by Flickr, which you may find * referenced around the Internet. *

* Satoshi explains: why base-58 instead of standard base-64 encoding? *

*

* However, note that the encoding/decoding runs in O(n²) time, so it is * not useful for large data. *

* The basic idea of the encoding is to treat the data bytes as a large number * represented using base-256 digits, convert the number to be represented using * base-58 digits, preserve the exact number of leading zeros (which are * otherwise lost during the mathematical operations on the numbers), and * finally represent the resulting base-58 digits as alphanumeric ASCII * characters. */ public class Base58 { public static final char[] ALPHABET = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz".toCharArray(); private static final char ENCODED_ZERO = ALPHABET[0]; private static final int[] INDEXES = new int[128]; static { Arrays.fill(INDEXES, -1); for (int i = 0; i < ALPHABET.length; i++) { INDEXES[ALPHABET[i]] = i; } } /** * Decodes the given base58 string into the original data bytes. * * @param input * the base58-encoded string to decode * @return the decoded data bytes */ public static byte[] decode(final String input) { if (input.length() == 0) { return new byte[0]; } // Convert the base58-encoded ASCII chars to a base58 byte sequence // (base58 digits). byte[] input58 = new byte[input.length()]; for (int i = 0; i < input.length(); ++i) { char c = input.charAt(i); int digit = c < 128 ? INDEXES[c] : -1; if (digit < 0) { throw new IllegalStateException("InvalidCharacter in base 58"); } input58[i] = (byte) digit; } // Count leading zeros. int zeros = 0; while (zeros < input58.length && input58[zeros] == 0) { ++zeros; } // Convert base-58 digits to base-256 digits. byte[] decoded = new byte[input.length()]; int outputStart = decoded.length; for (int inputStart = zeros; inputStart < input58.length;) { decoded[--outputStart] = divmod(input58, inputStart, 58, 256); if (input58[inputStart] == 0) { ++inputStart; // optimization - skip leading zeros } } // Ignore extra leading zeroes that were added during the calculation. while (outputStart < decoded.length && decoded[outputStart] == 0) { ++outputStart; } // Return decoded data (including original number of leading zeros). return Arrays.copyOfRange(decoded, outputStart - zeros, decoded.length); } public static BigInteger decodeToBigInteger(final String input) { return new BigInteger(1, decode(input)); } /** * Divides a number, represented as an array of bytes each containing a * single digit in the specified base, by the given divisor. The given * number is modified in-place to contain the quotient, and the return value * is the remainder. * * @param number * the number to divide * @param firstDigit * the index within the array of the first non-zero digit (this * is used for optimization by skipping the leading zeros) * @param base * the base in which the number's digits are represented (up to * 256) * @param divisor * the number to divide by (up to 256) * @return the remainder of the division operation */ private static byte divmod(final byte[] number, final int firstDigit, final int base, final int divisor) { // this is just long division which accounts for the base of the input // digits int remainder = 0; for (int i = firstDigit; i < number.length; i++) { int digit = number[i] & 0xFF; int temp = remainder * base + digit; number[i] = (byte) (temp / divisor); remainder = temp % divisor; } return (byte) remainder; } /** * Encodes the given bytes as a base58 string (no checksum is appended). * * @param input * the bytes to encode * @return the base58-encoded string */ public static String encode(byte[] input) { if (input.length == 0) { return ""; } // Count leading zeros. int zeros = 0; while (zeros < input.length && input[zeros] == 0) { ++zeros; } // Convert base-256 digits to base-58 digits (plus conversion to ASCII // characters) input = Arrays.copyOf(input, input.length); // since we modify it // in-place char[] encoded = new char[input.length * 2]; // upper bound int outputStart = encoded.length; for (int inputStart = zeros; inputStart < input.length;) { encoded[--outputStart] = ALPHABET[divmod(input, inputStart, 256, 58)]; if (input[inputStart] == 0) { ++inputStart; // optimization - skip leading zeros } } // Preserve exactly as many leading encoded zeros in output as there // were leading zeros in input. while (outputStart < encoded.length && encoded[outputStart] == ENCODED_ZERO) { ++outputStart; } while (--zeros >= 0) { encoded[--outputStart] = ENCODED_ZERO; } // Return encoded string (including encoded leading zeros). return new String(encoded, outputStart, encoded.length - outputStart); } }